Personal Data
 
  Name:    Ruizhao Zi   
 
 
 Address: School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China   
 
 
 Email:      
 
rzz@mail.ccnu.edu.cn
 
 
 
 Education
      
  09. 2010-06.2013, PhD in Mathematics, awarded by Zhejiang University, Hangzhou, P.R. China   
 
 09.2007-06.2010, Master of Science, in Mathematics, awarded by Central China Normal University, Wuhan, P.R. China   
 
 09.2003-06.2007, B.S. in geography, awarded by Central China Normal University, Wuhan, P.R. China   
 
 
 
 
Employment
 
  Central China Normal University: Lecturer, 07.2013-01.2014   
 
 Technology Univerisity of Darmstadt: Postdoctoral Fellow, 01.2014-07.2014   
 
 Central China Normal University: Lecturer, 07.2014-present   
 
 
 
Research
 
  Partial Differential Equations, Harmonic Analysis   
 
 
 
Publications and Preprints
 
 
 Published
 :
 [1]             
 
R.-Z. Zi, D.-Y. Fang and T. Zhang, Global solutions to the incompressible Oldroyd-B model in the critical    
 
Lp framework: The case of non-small coupling parameter,   
 
Arch. Rational Mech. Anal.,   
 
213 (2014), 651-687.   
 
 [2]        D.-Y. Fang and    
 
R.-Z. Zi, Incompressibel limit of Oldroyd-B fluids in the whole space,   
 
J. Differential Equations,
 256 (2014), 2559-2602.   
 
 [3]           D.-Y. Fang, M. Hieber and    
 
R.-Z. Zi, Global existence results for Oldroyd-B   fluids in exterior domains: the case of non-small coupling parameters,   
 
  Mathematische Annalen,
 357 (2013), no. 2, 687-709.   
 
 [4]           S.-J. Ding, J.-R. Huang, H.-Y. Wen and    
 
R.-Z. Zi, Incompressible limit of the compressible nematic liquid crystal flow,    
 
Journal of Functional Analysis, 
 264 (2013), no. 7, 1711-1756.   
 
 [5]           D.-Y. Fang and    
 
R.-Z. Zi, On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations,    
 
Discrete and Continuous Dynamical Systems (DCDS-A),
 33 (2013), no. 8, 3517-3541.   
 
 [6]           D.-Y. Fang and    
 
R.-Z. Zi, Strong solutions of 3D compressible Oldroyd-B fluids   
 
, Mathematical Methods in the Applied Sciences, 
 36 (2013), no.11, 1423-1439.   
 
 [7]           L. Yao, C.-J. Zhu and    
 
R.-Z. Zi, Incompressible limit of viscous liquid-gas two phase flow model,    
 
SIAM Journal on Mathematical Analysis,    
 
44 (2012), no. 5, 3324-3345.   
 
 [8]           D.-Y. Fang,    
 
R.-Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime,    
 
Journal of Mathematical Physics,    
 
53 (2012), 033706.   
 
 [9]           D.-Y. Fang,    
 
R.-Z. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows,    
 
Nonlinear Analysis: Theory, Methods & Applications,
 75 (2012), no. 6, 3130-3141.   
 
 [10]           D.-Y. Fang,    
 
R.-Z. Zi and T. Zhang, Decay estimates for isentropic compressible Navier-Stokes equations in bounded domain,    
 
Journal of Mathematical Analysis and Applications,    
 
386 (2012), no. 2, 939-947.   
 
 [11]           C.-J. Zhu and    
 
R.-Z. Zi, Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum,    
 
Discrete and Continuous Dynamical Systems (DCDS-A),
 30 (2011), no. 4, 1263-1283.   
 
 [12]         H.-Z. Xie and    
 
R.-Z. Zi, Remarks on the nonliner instability of incompressible Euler equations   
 
, Acta Mathematica Sinica. English Series, 
 31 (2011), no. 5, 1877-1888.   
      
 
 
Submitted
 :
 [13]         
 
R.-Z. Zi, Global solution to the incompressible Oldroyd-B model in hybrid Besov spaces,    
 
submitted, 2014.   
 
 [14]         
 
R.-Z. Zi, Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter,    
 
submitted, 2014.